首页 > AI教程资讯 >Meta版Sora深夜横空出世!92页论文曝光技术细节,Llama 3架构立功

Meta版Sora深夜横空出世!92页论文曝光技术细节,Llama 3架构立功

2025-08-1802ai门户网

编辑:桃子Aeneas

【本站导读】Meta版Sora,就在刚刚惊艳来袭。MovieGen可生成1080p、16秒、每秒16帧的高清长视频,还能生成音效、编辑视频、上传图像生成个性化视频。甚至Meta还放出了92页论文,模型架构、训练细节一并公开,干货满满!

毫无预兆地,Meta版Sora——MovieGen,就在刚刚抢先上线了!

Meta将其称为「迄今最先进的媒体基础模型」。

全新上线的大杀器MovieGenVideo,是一个30B参数的Transformer模型,可以从单个文本提示,生成高质量的高清图像和视频,视频为1080P、16秒、每秒16帧。

一同推出的还有MovieGenAudio。这是一个13B参数的Transformer模型。通过视频输入和文本提示,它就可以可控性生成和视频同步的高保真音频,时长最长45秒。

最惊人的是,这次Meta一并连论文都发布了。

论文中,详细介绍了MovieGen的架构、训练方法和实验结果。

论文地址:https://ai.meta.com/static-resource/movie-gen-research-paper/?utm_source=twitter&utm_medium=organic_social&utm_content=thread&utm_campaign=moviegen

从论文可以看出,MovieGenVideo沿用了Transformer的设计,尤其借鉴了Llama3。而研究人员引入的「流匹配」(FlowMatching),让视频在精度和细节表现上,都优于扩散模型。

稍显遗憾的是,这次Meta发的也是「期货」,产品预计明年才正式向公众开放。

不出意外的,围观群众给出亮眼点评:「Meta居然抢着OpenAI之前发布了Sora,呵呵」。

就在昨天,Sora负责人TimBrooks选择离职,Meta这个时间点放出MovieGen,也真是够扎心的。

而HuggingFace工程师也直接贴出Meta开源主页,在线催更模型开源。

也有人期待,Meta版Sora的这次发布,或许或激出其他家的下一个王炸级产品。

一键视频生成,赶超Sora

凭借开源MovieGen,Meta正式进军AI视频领域。

可以说,MovieGen在编辑、个性化功能方面,站在了一个新阶段。而且,最令人印象深刻的,便是把一张个人照,转换成个性化视频。

小扎在社交平台上以身试法,将自己照片作为输入,MovieGen为其配上了健身的视频。

一个小女孩拿着风筝跑过海滩,仿佛电影中的场景。

戴着粉色太阳镜躺在甜甜圈游泳圈上的树懒,视频中光影和水波都很自然。

在冒着热气的温泉中玩着小木船的白毛红脸猴,无论是热气、水面、猴子毛发还是水中怪石,都看不出破绽。

在海边耍着火圈的男人,视频完全符合prompt的要求,镜头、光影和氛围的刻画,已经达到了大片级画质。

各种超现实的场景,MovieGen都能完美生成,比如这只毛茸茸的冲浪考拉。

文本编辑视频

而只要使用文本输入,就可以编辑现有视频。

MovieGen可以支持非常精确的视频编辑,无论是样式、过渡,还是精细编辑。

通过文字输入,就能让小女孩向空中放飞的灯笼,变成一个气泡。

在沙地上跑步的男子,手中可以加上蓝色绒球,周围环境可以换成仙人掌沙漠,甚至可以让男子换上一身恐龙套装。

在观众席上观影的一对男女,可以让他们戴上3D眼镜、背景换成游乐园,甚至加上下雨的特效。

南极冰原上的企鹅可以穿上维多利亚式的衣服,背景可以加上遮阳伞和沙滩床,甚至整幅画面都能变成铅笔素描画。

个性化视频

并且,MovieGen还有一个Sora没有的亮点——个性化视频!

只要上传我们想要的图像,它就可以由此生成个性化视频,保留人物的身份和动作。

输入这个女孩的照片,给出prompt,就能让她在南瓜地上戴着围巾喝咖啡。

让这名男子化身科学家,穿上实验服开始做实验。

一张照片,就能生成自己和爱犬在露台上的自拍视频。

甚至让自己在西部世界小镇中化身骑**女牛仔,身后就是落基山脉。一秒走进大片不是梦!

92页技术报告,同用Llama3架构

MovieGen发布同时,Meta还祭出了92页的技术报告。值得一提的是,这次团队也被命名为「MovieGenteam」。

Pytorch之父SoumithChintala表示,其中很多细节将会推动AI视频领域的发展。

接下来,一起看看MovieGen得以实现的技术要点吧。

研究人员表示,MovieGen主要是基于两种基础模型打造的,一个是MovieGenVideo,另一个是MovieGenAudio。

MovieGenVideo

MovieGenVideo参数有300亿,基础架构细节如下图所示。

它能够联合文本到图像和文本到视频的生成。

MovieGenVideo可以遵循文本提示,生成长达16秒、16帧每秒高清视频。

它也是通过预训练微调完成,在骨干网络架构上,它继续沿用了Transformer的设计,尤其是借鉴的Llama3的设计。

而且,该模型有强大的适应性,可生成不同纵横比、分辨率和时长的高质量图像和视频。

预训练阶段,在大约1亿个视频和10亿张图像上进行了联合预训练。

它是通过「看」视频,来学习视觉世界。

实验结果发现,MovieGenVideo模型能够理解物理世界——

可以推理物体运动、主-客体交互、几何关系、相机运动、物理规律,以及各种概念的合理运动。

在微调阶段,研究人员精选了一部分视频,对模型在美学、运动质量方面完成了微调。

为了提高训练、推理效率,研究人员在时空压缩的潜在空间(LatentSpace)中进行生成。

为此,他们训练了一个单一的时间自编码器(TAE),用于将RGB图像和视频映射到潜在空间。

然后,再使用预训练文本编码器,来编码用户提供的文本提示,并获得文本提示嵌入,这些嵌入用作模型的条件。

流匹配,击败扩散损失

值得一提的是,研究人员还引入「流匹配」(FlowMatching)来训练生成模型,这使得视频生成效果在精度、细节表现上,都优于扩散模型。

「流匹配」是一种新兴的生成模型训练方法,其核心思想是——直接学习样本从初始噪声状态向目标数据分布转化的过程。

而且,模型只需通过估计如何在每个时间步中演化样本,即可生成高质量的结果。

与扩散模型相比,「流匹配」训练效率更高、计算成本更低、并且在时间维度保持连续性和一致性。

有网友对此总结道,在质量和文本对齐上,人类评估都强烈倾向于流匹配,而不是扩散。

此外,MovieGenVideo在技术上也引入了很多创新:

他们引入了创新的位置编码方法——「因子化可学习编码」,能够独立对高度、宽度、时间三个维度进行编码,然后将其相加。

基于这种灵活设计,让模型不仅能够适应不同宽高比,还能处理任意长度的视频。

另外,为了解决模型推理效率问题,研究人员采用了一种「线性-二次时间步长」的策略。

如下图所示,仅需50步,就能实现接近1000步采样效果,大幅提升了推理速度。

与此同时,MovieGenVideo还采用了一种巧妙的「时间平铺」方法,进一步提升生成效率。

具体来说,这种方法将输入的视频,在时间维度上切分成多个小片段,然后对每个片对独立进行编码和解码,最后再将所有处理好的片段,重新拼接成完成视频。

这种分而治之策略,不仅显著降低内存需求,还提高了整体推理效率。

为了确保最终生成的视频质量,团队在解码阶段采用了精心设计的重叠和混合技术。

最后微调得到的MovieGenVideo模型,与当前最先进的模型相比,大幅超越LuamaLabs的DreamMachine,还有Gen-3。

它仅小幅超越了Sora、Kling1.5。

如下是,生成图像质量的对比。总的来说,MovieGenVideo在画面一致性、质量等方面,均取得了最优表现。

提示中袋鼠走路细节,在Sora中到最后并没有展现。

MovieGenAudio

音频模型参数共有130亿,能够生成48kHz的高质量电影音效和音乐。

而且,这些AI音频与输入视频,实现同步。

值得一提的是,MovieGenAudio可以原生处理不同长度音频生成。

这一过程是通过TAE完成解码与编码。

而且,通过音频延伸技术,能够为长达几分钟视频,制作出连贯长音频。

研究人员在大约100万小时音频上,对模型进行了预训练。

得到的预训练模型,不仅学会了物理关联,还学会了视觉世界和音频世界之间的心理关联。

另外,模型还可以生成,与视觉场景匹配的非画面「内环境」声音,即便是声源没有出现在画面中。

最后,模型还可以生成支持情绪,并与视觉场景动作相匹配的非画面内音乐。

而且,它还能与专业地混合音效和背景音乐。

通过评估,与当前先进的音频模型ElevenLabs等相比,MovieGenAudio结果如下所示。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表本站立场。文章及其配图仅供学习分享之

3539
780

同类推荐更多

有哪些稳定的海外影视网站推荐

有哪些稳定的海外影视网站推荐

最火的AI教程资讯

2025-01-07

有哪些稳定的海外影视网站推荐_映技派,专注ai人工智能!,在寻找免费的影视网站时,有许多优秀稳定的海外影视网站可以选择,以下是一些针对海外观众推荐的影视网站,适合观看电影和电视剧。